To view full text click on the last word of titles.
Trace Metal Substitution in Marine Phytoplankton. Annual Review of Earth and Planetary Sciences [Internet]. 2020;48:491-517. https://doi.org/10.1146/annurev-earth-053018-060108 .
Nitrite oxidation exceeds reduction and fixed nitrogen loss in anoxic Pacific waters. Marine Chemistry [Internet]. 2020;224. https://doi.org/10.1016/j.marchem.2020.103814 .
Effect of iron limitation on the isotopic composition of cellular and released fixed nitrogen in Azotobacter vinelandii. Geochimica et Cosmochimica Acta [Internet]. 2019;244:12-23. https://www.sciencedirect.com/science/article/pii/S0016703718305489?via%3Dihub .
The purple non-sulfur bacterium Rhodopseudomonas palustris produces novel petrobactin-related siderophores under aerobic and anaerobic conditions. Environmental Microbiology [Internet]. 2018;20(5). https://onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.14078 .
Crochelins, siderophores with a novel iron-chelating moiety from the nitrogen-fixing bacterium Azotobacter chroococcum. Angewandte Chemie [Internet]. 2018;(57):536-541. http://onlinelibrary.wiley.com/doi/10.1002/anie.201709720/epdf .
Diversity and Activity of Alternative Nitrogenases in Sequenced Genomes and Coastal Environments. Frontiers in Microbiology [Internet]. 2017;8:267. https://doi.org/10.3389/fmicb.2017.00267 .
Rubisco Extraction and Purification from Diatoms. bio-protocol [Internet]. 2017;7(6). https://dx.doi.org/10.21769/BioProtoc.2191 .
The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium. Science [Internet]. 2017;356(5 May 2017):527-531. https://dx.doi.org/10.1126/science.aal2981 .
Siderophore Production in Azotobacter vinelandii in Response to Fe-, Mo-, and V-Limitation. Environmental Microbiology [Internet]. 2017;. https://dx.doi.org/10.1111/1462-2920.13857 .
The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii. Photosynthesis Research Journal [Internet]. 2017;132:83-93. https://dx.doi.org/10.1007/s11120-016-0330-2 .
The Siderophore Metabolome of Azotobacter vinelandii. Applied and Environmental Microbiology [Internet]. 2016;82(1). http://dx.doi.org/10.1128/AEM.03160-15 .
Alternative nitrogenase activity in the environment and nitrogen cycle implications. Biogeochemistry [Internet]. 2016;. http://dx.doi.org/10.1007/s10533-016-0188-6 .
Small Molecule LC-MS/MS Fragmentation Data Analysis and Application to Siderophore Identification. In Applications from Engineering with MATLAB Concepts [Internet]. Rijeka, Croatia: InTech; 2016. pp. 191-213. https://dx.doi.org/10.5772/63018 .
Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. Journal of Experimental Botany [Internet]. 2016;67(11):3445-3456. https://dx.doi.org/10.1093/jxb/erw163 .
The effect of acidification on the bioavailability and electrochemical lability of zinc in seawater. Philosophical Transactions of the Royal Society A [Internet]. 2016;374. http://rsta.royalsocietypublishing.org/ .
Mechanisms of Hg(II) uptake and methylation in methylating bacteria [Internet]. . SciTech Connect; 2016. http://www.osti.gov/scitech/biblio/1328868 .
Response of Photosynthesis to Ocean Acidification. Oceanography [Internet]. 2015;25(2):74 - 91. http://dx.doi.org/10.5670/oceanog.2015.33 .
Bioavailability and electroreactivity of zinc complexed to strong and weak organic ligands. Environmental Science & Technology [Internet]. 2015;:150807170738003. http://dx.doi.org/10.1021/acs.est.5b02098 .
Antarctic phytoplankton down-regulate their carbon-concentrating mechanisms under high CO2 with no change in growth rates. Marine Ecology Progress Series [Internet]. 2015;532:13 - 28. http://dx.doi.org/10.3354/meps11336 .
Natural and anthropogenic processes contributing to metal enrichment in surface soils of central Pennsylvania. Biogeochemistry [Internet]. 2015;123:265-283. http://dx.doi.org/10.1007/s10533-015-0068-5 .
Effect of Thiols, Zinc, and Redox Conditions on Hg Uptake in Shewanella oneidensis. Environmental Science and Technology. 2015;49. .
Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms. New Phytologist [Internet]. 2015;205:192–201. http://dx.doi.org/10.1111/nph.12976 .
Biological oceanography: The CO2 switch in diatoms. Nature Climate Change [Internet]. 2015;5(8):722 - 723. http://dx.doi.org/10.1038/nclimate2691 .
Gross and net production during the spring bloom along the Western Antarctic Peninsula. New Phytologist [Internet]. 2015;205(1):182-191. http://dx.doi.org/10.1111/nph.13125 .
Slow carboxylation of Rubisco constrains the rate of carbon fixation during Antarctic phytoplankton blooms. New Phytologist [Internet]. 2015;205:172–181. http://dx.doi.org/10.1111/nph.13021 .
Iron bioavailability to phytoplankton: an empirical approach. ISME J [Internet]. 2015;9(4):1003 - 1013. http://dx.doi.org/10.1038/ismej.2014.199 .
Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients. In Treatise on Geochemistry [Internet]. 2nd ed. Elsevier Ltd.; 2014. http://dx.doi.org/10.1016/B978-0-08-095975-7.00605-7 .
ChelomEx: Isotope-Assisted Discovery of Metal Chelates in Complex Media Using High-Resolution LC-MS. Analytical ChemistryAnalytical Chemistry [Internet]. 2014;86(22):11298 - 11305. http://dx.doi.org/10.1021/ac503000e .
Metabolic balance of coastal Antarctic waters revealed by autonomous pCO2 and ΔO2/Ar measurements. Geophysical Research Letters [Internet]. 2014;41:6803–6810. http://dx.doi.org/10.1002/2014GL061266 .
Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. Proceedings of the National Academy of Sciences [Internet]. 2014;111:4782-4787. http://dx.doi.org/10.1073/pnas.1402976111 .
Effect of Divalent Metals on Hg(II) Uptake and Methylation by Bacteria. Environmental Science & Technology [Internet]. 2014;48:3007-3013. http://dx.doi.org/10.1021/es405215v .
Detection of a key Hg methylation gene, hgcA, in wetland soils. Environmental Microbiology Reports [Internet]. 2014;6:441–447. http://dx.doi.org/10.1111/1758-2229.12136 .
Rubisco is a small fraction of total protein in marine phytoplankton. New Phytologist [Internet]. 2013;198:52–58. http://dx.doi.org/10.1111/nph.12143 .
Cadmium in Marine Phytoplankton. In: . Cadmium: From Toxicity to Essentiality [Internet]. Springer Netherlands; 2013. pp. 509-528. http://dx.doi.org/10.1007/978-94-007-5179-8_16 .
A Possible Immunological Approach to the Study of Plasmalemma Redox Enzymes in Phytoplankton. In Immunochemical Approaches to Coastal, Estuarine and Oceanographic Questions [Internet]. Springer-Verlag; 2013. pp. 277–277. http://dx.doi.org/10.1029/LN025p0277 .
Crystal ball – 2013. Environmental Microbiology Reports [Internet]. 2013;5:1–16. http://dx.doi.org/10.1111/1758-2229.12021 .
The oceanic cadmium cycle: Biological mistake or utilization?. Proceedings of the National Academy of Sciences [Internet]. 2013;110:E1877. http://dx.doi.org/10.1073/pnas.1304746110 .
Modest increase in the C:N ratio of N-limited phytoplankton in the California Current in response to high CO2. Marine Ecology Progress Series [Internet]. 2012;468:31 - 42. http://dx.doi.org/10.3354/meps09981 .
Ocean acidification slows nitrogen fixation and growth in the dominant diazotroph Trichodesmium under low-iron conditions. Proceedings of the National Academy of Sciences [Internet]. 2012;109:E3094–E3100. http://dx.doi.org/10.1073/pnas.1216012109 .
Effect of ocean acidification on cyanobacteria in the subtropical North Atlantic. Aquatic Microbial Ecology [Internet]. 2012;66(3):211 - 222. http://dx.doi.org/10.3354/ame01576 .
The effect of pH on the uptake of zinc and cadmium in marine phytoplankton: Possible role of weak complexes. Limnology and Oceanography [Internet]. 2012;57:293–304. http://dx.doi.org/10.4319/lo.2012.57.1.0293 .
Structural and inhibition insights into carbonic anhydrase CDCA1 from the marine diatom Thalassiosira weissflogii. [Internet]. 2012;94(5):1232 - 1241. http://dx.doi.org/10.1016/j.biochi.2012.02.013 .
Weak Organic Ligands Enhance Zinc Uptake in Marine Phytoplankton. Environmental Science & TechnologyEnvironmental Science & Technology [Internet]. 2012;46(10):5438 - 5445. http://dx.doi.org/10.1021/es300335u .
Cadmium-carbonic anhydrase. In Handbook of Metalloproteins. John Wiley & Sons Ltd.; 2011. pp. 717-721. .
Efficiency of the CO2-concentrating mechanism of diatoms. Proceedings of the National Academy of Sciences [Internet]. 2011;108(10):3830 - 3837. http://dx.doi.org/10.1073/pnas.1018062108 .
Essential metals for nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and high use efficiency. Environmental Microbiology [Internet]. 2011;13(6):1395 - 1411. http://doi.wiley.com/10.1111/j.1462-2920.2011.02440.x .
Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proceedings of the National Academy of Sciences [Internet]. 2011;108(21):8714 - 8719. http://dx.doi.org/10.1073/pnas.1105781108 .
Inhibition of the R1 fragment of the cadmium-containing f-class carbonic anhydrase from the diatom Thalassiosira weissflogii. Bioorganic and Medicinal Chemistry Letters [Internet]. 2010;20. https://www.doi.org/10.1016/j.bmcl.2010.06.139 .
Effect of Ocean Acidification on Iron Availability to Marine Phytoplankton. Science [Internet]. 2010;327(5966):676 - 679. http://dx.doi.org/10.1126/science.1183517 .
The effect of CO2 on the photosynthetic physiology of phytoplankton in the Gulf of Alaska. Limnology and Oceanography [Internet]. 2010;55:2011–2024. http://dx.doi.org/10.4319/lo.2010.55.5.2011 .
Expression and diversity of alkaline phosphatase ehap1 in emiliania huxleyi (prymnesiophyceae)1. Journal of Phycology [Internet]. 2010;46:85–92. http://dx.doi.org/10.1111/j.1529-8817.2009.00788.x .
Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Global Biogeochemical Cycles [Internet]. 2010;24:n/a–n/a. http://dx.doi.org/10.1029/2008GB003407 .
Mercury methylation in oxygen deficient zones of the oceans: No evidence for the predominance of anaerobes. Marine Chemistry [Internet]. 2010;122(1-4):11 - 19. http://dx.doi.org/10.1016/j.marchem.2010.08.004 .
Handbook of Metalloproteins Cadmium-Carbonic Anhydrase [Internet]. . Chichester, UK: John Wiley & Sons, Ltd; 2010. http://doi.wiley.com/10.1002/0470028637.met271 .
High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nature Geosci [Internet]. 2009;2(2):123 - 126. http://dx.doi.org/10.1038/ngeo412 .
Effects of the pH/pCO₂ control method on medium chemistry and phytoplankton growth. Biogeosciences [Internet]. 2009;6:1199–1207. http://dx.doi.org/10.5194/bg-6-1199-2009 .
Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nature Geoscience [Internet]. 2009;2(1):42 - 45. http://www.nature.com/doifinder/10.1038/ngeo366 .
The role of siderophores in iron acquisition by photosynthetic marine microorganisms. BioMetals [Internet]. 2009;22:659-669. http://dx.doi.org/10.1007/s10534-009-9235-2 .
Multiple roles of siderophores in free-living nitrogen-fixing bacteria. BioMetals [Internet]. 2009;22:573-581. http://dx.doi.org/10.1007/s10534-009-9222-7 .
Storage and bioavailability of molybdenum in soils increased by organic matter complexation. Nature Geoscience [Internet]. 2009;2(9):625 - 629. http://www.nature.com/doifinder/10.1038/ngeo589 .
Role of the Siderophore Azotobactin in the Bacterial Acquisition of Nitrogenase Metal Cofactors. Environmental Science & TechnologyEnvironmental Science & Technology [Internet]. 2009;43(19):7218 - 7224. http://dx.doi.org/10.1021/es8037214 .
Response of cell surface pH to pCO2 and iron limitation in the marine diatom Thalassiosira weissflogii. [Internet]. 2009;114(1 -2):31 - 36. http://dx.doi.org/10.1016/j.marchem.2009.03.003 .
Availability of iron from iron-storage proteins to marine phytoplankton. Limnology and Oceanography [Internet]. 2008;53(3). http://dx.doi.org/10.4319/lo.2008.53.3.0890 .
Nickel limitation and zinc toxicity in a urea-grown diatom. Limnology and Oceanography [Internet]. 2008;53:2462–2471. http://dx.doi.org/10.4319/lo.2008.53.6.2462 .
Cobalt Limitation of Growth and Mercury Methylation in Sulfate-Reducing Bacteria. Environmental Science & TechnologyEnvironmental Science & Technology [Internet]. 2008;42(1):93 - 99. http://dx.doi.org/10.1021/es0705644 .
The role of unchelated Fe in the iron nutrition of phytoplankton. Limnology and Oceanography [Internet]. 2008;53:400–404. http://dx.doi.org/10.4319/lo.2008.53.1.0400 .
The co-evolution of phytoplankton and trace element cycles in the oceans. Geobiology [Internet]. 2008;6:318–324. http://dx.doi.org/10.1111/j.1472-4669.2008.00144.x .
Comment on "Phytoplankton Calcification in a High-CO2 World". Science [Internet]. 2008;322:1466. http://dx.doi.org/10.1126/science.1161096 .
Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature [Internet]. 2008;452(7183):56 - 61. http://dx.doi.org/10.1038/nature06636 .
Expression of cadmium carbonic anhydrase of diatoms in seawater. Aquatic Microbial Ecology [Internet]. 2008;51:183 - 193. http://dx.doi.org/10.3354/ame01192 .
Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores. Nature Geoscience [Internet]. 2008;1(4):243 - 246. http://www.nature.com/doifinder/10.1038/ngeo161 .
Vanadium Requirements and Uptake Kinetics in the Dinitrogen-Fixing Bacterium Azotobacter vinelandii. Applied and Environmental Microbiology [Internet]. 2008;74(5):1478 - 1484. http://aem.asm.org/cgi/doi/10.1128/AEM.02236-07 .
Catechol Siderophores Control Tungsten Uptake and Toxicity in the Nitrogen-Fixing Bacterium Azotobacter vinelandii. Environmental Science & Technology [Internet]. 2008;42(7):2408 - 2413. http://dx.doi.org/10.1021/es702651f .
Complexation of oxoanions and cationic metals by the biscatecholate siderophore azotochelin. JBIC Journal of Biological Inorganic Chemistry [Internet]. 2007;12(3):367 - 376. http://dx.doi.org/10.1007/s00775-006-0194-6 .
Zinc, cadmium, and cobalt interreplacement and relative use efficiencies in the coccolithophore Emiliania huxleyi. Limnology and Oceanography [Internet]. 2007;52:2294–2305. http://dx.doi.org/10.4319/lo.2007.52.5.2294 .
Comparison of the kinetics of iron release from a marine (Trichodesmium erythraeum) Dps protein and mammalian ferritin in the presence and absence of ligands. Journal of Inorganic Biochemistry [Internet]. 2007;101:1686 - 1691. http://dx.doi.org/10.1016/j.jinorgbio.2007.07.022 .
Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms1. Journal of Phycology [Internet]. 2007;43:715–729. http://dx.doi.org/10.1111/j.1529-8817.2007.00359.x .
Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters. Environmental Microbiology [Internet]. 2007;9:403–413. http://dx.doi.org/10.1111/j.1462-2920.2006.01151.x .
Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: Implications for Zn-P co-limitation in the ocean. Limnology and Oceanography [Internet]. 2006;51:299–309. http://dx.doi.org/10.4319/lo.2006.51.1.0299 .
Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton. [Internet]. 2006;98(1):18 - 30. http://dx.doi.org/10.1016/j.marchem.2005.06.003 .
Overexpression and Characterization of an Iron Storage and DNA-Binding Dps Protein from Trichodesmium erythraeum. Applied and Environmental Microbiology [Internet]. 2006;72:2918-2924. http://dx.doi.org/10.1128/AEM.72.4.2918-2924.2006 .
Edward I. Stiefel (1942-2006). [Internet]. 2006;314(5804):1406. http://www.jstor.org/stable/20032923 .
Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton. Marine Chemistry [Internet]. 2006;98(1):18 - 30. http://dx.doi.org/10.1016/j.marchem.2005.06.003 .
A Novel Alkaline Phosphatase In The Coccolithophore Emiliania Huxleyi (Prymnesiophyceae) And Its Regulation By Phosphorus. Journal of Phycology [Internet]. 2006;42:835–844. http://dx.doi.org/10.1111/j.1529-8817.2006.00243.x .
A cadmium enzyme from a marine diatom. Nature [Internet]. 2005;435(7038):42 - 42. http://dx.doi.org/10.1038/435042a .
The Biogeochemistry of Cadmium. In Biogeochemical Cycles of Elements . New York: M. Dekker; 2005. p. 301. .
Barium uptake and adsorption in diatoms. [Internet]. 2005;69(11):2745 - 2752. http://dx.doi.org/10.1016/j.gca.2004.11.026 .
Trace metal ion buffers and their use in culture studies. In Algal Culturing Techniques. Burlington, MA: Academic Press; 2005. pp. 35-63. .
A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnology and Oceanography [Internet]. 2005;50(3):872 - 882. http://dx.doi.org/10.4319/lo.2005.50.3.0872 .
Extracellular production of superoxide by marine diatoms: Contrasting effects on iron redox chemistry and bioavailability. Limnology and Oceanography [Internet]. 2005;50((4):1172-1180. https://dx.doi.org/10.4319/lo.2005.50.4.1172 .
Dark Oxidation of Dissolved and Liquid Elemental Mercury in Aquatic Environments. Environmental Science & TechnologyEnvironmental Science & Technology [Internet]. 2005;39(1):110 - 114. http://dx.doi.org/10.1021/es035444k .
Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatomas a function of pCO2. Limnology and Oceanography [Internet]. 2004;49:322–329. http://dx.doi.org/10.4319/lo.2004.49.2.0322 .
Photoinduced Oxidation of Hg(aq) in the Waters from the St. Lawrence Estuary. Environmental Science & Technology [Internet]. 2004;38(2):508 - 514. http://dx.doi.org/10.1021/es034394g .
Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO 2. Limnology and Oceanography [Internet]. 2004;49(2):322 - 329. http://dx.doi.org/10.4319/lo.2004.49.2.0322 .
The Role of the C₄ Pathway in Carbon Accumulation and Fixation in a Marine Diatom. [Internet]. 2004;135(4):2106 - 2111. http://www.jstor.org/stable/4356567 .
Response to Comment on Sources and Variations of Mercury in Tuna. Environmental Science & TechnologyEnvironmental Science & Technology [Internet]. 2004;38(14):4048 - 4048. http://dx.doi.org/10.1021/es0404217 .
Simultaneous determination of iron reduction and uptake by phytoplankton. Limnology and Oceanography: Methods [Internet]. 2004;2:137 - 145. http://dx.doi.org/10.4319/lom.2004.2.137 .
Photoinduced Oxidation of Hg0(aq) in the Waters from the St. Lawrence Estuary. Environmental Science & TechnologyEnvironmental Science & Technology [Internet]. 2004;38(2):508 - 514. http://dx.doi.org/10.1021/es034394g .
The Role of the C4 Pathway in Carbon Accumulation and Fixation in a Marine Diatom. [Internet]. 2004;135(4):2106 - 2111. http://www.jstor.org/stable/4356567 .
The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature [Internet]. 2003;425(6955):291 - 294. http://dx.doi.org/10.1038/nature01953 .
The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary?. Protagonists in Chemistry, Frausto Da Silva [Internet]. 2003;356:308 - 318. http://dx.doi.org/10.1016/S0020-1693(03)00442-0 .
Mercury Methylation Independent of the Acetyl-Coenzyme A Pathway in Sulfate-Reducing Bacteria. Applied and Environmental Microbiology [Internet]. 2003;69(9):5414 - 5422. http://dx.doi.org/10.1128/AEM.69.9.5414-5422.2003 .
The Elemental Composition of Some Marine Phytoplankton. Journal of Phycology [Internet]. 2003;39:1145–1159. http://dx.doi.org/10.1111/j.0022-3646.2003.03-090.x .
Sources and Variations of Mercury in Tuna. Environmental Science & TechnologyEnvironmental Science & Technology [Internet]. 2003;37(24):5551 - 5558. http://dx.doi.org/10.1021/es0340679 .
The Biogeochemical Cycles of Trace Metals in the Oceans. Science [Internet]. 2003;300:944-947. http://dx.doi.org/10.1126/science.1083545 .
Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients. In Treatise on Geochemistry. Cambridge, UK: Elsevier Science Ltd; 2003. pp. 113-143. .
Mercury Methylation by Desulfovibrio desulfuricans ND132 in the Presence of Polysulfides. Applied and Environmental Microbiology [Internet]. 2002;68(11):5741 - 5745. http://dx.doi.org/10.1128/AEM.68.11.5741-5745.2002 .
A Proton Buffering Role for Silica in Diatoms. Science [Internet]. 2002;297:1848-1850. http://dx.doi.org/10.1126/science.1074958 .
Acquisition of inorganic carbon by the marine diatom Thalassiosira weissflogii. Functional Plant Biology [Internet]. 2002;29(3):301. http://dx.doi.org/10.1071/PP01199 .
CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Marine Ecology Progress Series [Internet]. 2002;236:37 - 43. http://dx.doi.org/10.3354/meps236037 .
Sources of inorganic carbon for phytoplankton in the eastern Subtropical and Equatorial Pacific Ocean. Limnology and Oceanography [Internet]. 2002;47:1012–1022. http://dx.doi.org/10.4319/lo.2002.47.4.1012 .
Phytochelatins Are Bioindicators of Atmospheric Metal Exposure via Direct Foliar Uptake in Trees near Sudbury, Ontario, Canada. Environmental Science & TechnologyEnvironmental Science & Technology [Internet]. 2001;35(10):2108 - 2113. http://dx.doi.org/10.1021/es0016250 .
Differential effects of iron additions on organic and inorganic carbon production by phytoplankton. Limnology and Oceanography [Internet]. 2001;46:1199–1202. http://dx.doi.org/10.4319/lo.2001.46.5.1199 .
Photooxidation of Hg(0) in an estuarine system. Environmental Science & Technology [Internet]. 2001;35(24):4961 - 4961. http://dx.doi.org/10.1021/es0111840 .
Inorganic carbon acquisition in coastal Pacific phytoplankton communities. Limnology and Oceanography [Internet]. 2000;45:1485–1500. http://dx.doi.org/10.4319/lo.2000.45.7.1485 .
Mercury Speciation in the Presence of Polysulfides. Environmental Science & Technology [Internet]. 2000;34(11):2196 - 2200. http://dx.doi.org/10.1021/es9911115 .
Preserving the Ocean Circulation: Implications for Climate Policy. Climatic Change [Internet]. 2000;47:17-43. http://dx.doi.org/10.1023/A%3A1005624909182 .
A biological function for cadmium in marine diatoms. Proceedings of the National Academy of Sciences [Internet]. 2000;97(9):4627 - 4631. http://dx.doi.org/10.1073/pnas.090091397 .
Regulation of Carbonic Anhydrase Expression by Zinc, Cobalt, and Carbon Dioxide in the Marine Diatom Thalassiosira weissflogii. Plant Physiology [Internet]. 2000;123:345-352. http://dx.doi.org/10.1104/pp.123.1.345 .
Unicellular C4 photosynthesis in a marine diatom. Nature [Internet]. 2000;407(6807):996 - 999. http://dx.doi.org/10.1038/35039612 .
Reduced calcification in marine plankton in response to increased atmospheric CO2. Nature [Internet]. 2000;407(6802):364 - 367. http://dx.doi.org/10.1038/35030078 .
On the Acid−Base Chemistry of Permanently Charged Minerals. Environmental Science & Technology [Internet]. 1999;33(3):516 - 516. http://dx.doi.org/10.1021/es9820184 .
A Model for Metal Adsorption on Montmorillonite. Journal of Colloid and Interface Science [Internet]. 1999;210(1):43 - 54. http://dx.doi.org/10.1006/jcis.1998.5947 .
Modulation of cadmium uptake in phytoplankton by seawater CO2 concentration. Nature [Internet]. 1999;402(6758):165 - 167. http://dx.doi.org/10.1038/46007 .
A model of carbon isotopic fractionation and active carbon uptake in phytoplankton. Marine Ecology Progress Series [Internet]. 1999;182:295 - 298. http://dx.doi.org/10.3354/meps182295 .
Phytochelatin concentrations in the equatorial Pacific. Deep Sea Research Part I: Oceanographic Research Papers [Internet]. 1998;45(11):1779 - 1796. http://dx.doi.org/10.1016/S0967-0637(98)00043-0 .
The petF region of the chloroplast genome from the diatom Thalassiosira weissflogii: sequence, organization and phylogeny. European Journal of PhycologyEuropean Journal of Phycology [Internet]. 1998;33(3):203 - 211. http://dx.doi.org/10.1080/09670269810001736703 .
The petF region of the chloroplast genome from the diatom Thalassiosira weissflogii: sequence, organization and phylogeny. European Journal of Phycology [Internet]. 1998;33(3):203 - 211. http://dx.doi.org/10.1080/09670269810001736703 .
On the Acid−Base Chemistry of Permanently Charged Minerals. Environmental Science & Technology [Internet]. 1998;32(19):2829 - 2838. http://dx.doi.org/10.1021/es9802899 .
The Chemical Cycle and Bioaccumulation of Mercury. Annual Review of Ecology and SystematicsAnnual Review of Ecology and Systematics [Internet]. 1998;29(1):543 - 566. http://dx.doi.org/10.1146/annurev.ecolsys.29.1.543 .
A brief review of microbial arsenate respiration. Geomicrobiology Journal [Internet]. 1998;15(4):255 - 268. http://dx.doi.org/10.1080/01490459809378082 .
Biological cycling of iron in the ocean. In: Iron Transport and Storage in Microorganisms, Plants, and Animals. Metal Ions in Biological Systems. New York City: M.Dekker, Inc. ; 1998. pp. 1-36. .
Biological cycling of iron in the ocean. In Iron Transport and Storage in Microorganisms, Plants, and Animals. New York: M. Dekker, Inc. ; 1998. pp. 1-36. .
Carbonic Anhydrase In The Marine Diatom Thalassiosira Weissflogii (Bacillariophyceae)1. Journal of Phycology [Internet]. 1997;33(5):845 - 850. http://dx.doi.org/10.1111/j.0022-3646.1997.00845.x .
Active uptake of bicarbonate by diatoms. Nature [Internet]. 1997;390(6657):243 - 244. http://dx.doi.org/10.1038/36765 .
Iron Redox Cycling in Surface Waters: Effects of Humic Substances and Light. Environmental Science & Technology [Internet]. 1997;31(4):1004 - 1011. http://dx.doi.org/10.1021/es9604018 .
Trace metal control of phytochelatin production in coastal waters. Limnology and Oceanography [Internet]. 1997;42:601–608. http://dx.doi.org/10.4319/lo.1997.42.3.0601 .
Microbial Mobilization of Arsenic from Sediments of the Aberjona Watershed. Environmental Science & Technology [Internet]. 1997;31(10):2923 - 2930. http://dx.doi.org/10.1021/es970124k .
Production and Loss of Dissolved Gaseous Mercury in Coastal Seawater. Environmental Science & Technology [Internet]. 1997;31(12):3606 - 3611. http://dx.doi.org/10.1021/es9703685 .
Geochemistry of trace metals in the Gironde estuary. Geochimica et Cosmochimica Acta [Internet]. 1997;61(7):1421 - 1436. http://dx.doi.org/10.1016/S0016-7037(97)00016-1 .
Discussion on: “A mechanistic description of Ni and Zn sorption on Na-montmorillonite. Part I: Titration and sorption measurements. Part II: Modelling” by Bart Baeyens and Michael H. Bradbury. Journal of Contaminant Hydrology [Internet]. 1997;28(1-2):7 - 10. http://dx.doi.org/10.1016/S0169-7722(97)00004-1 .
Further comment: Coulombic effects on the adsorption of trace cations on clays. Journal of Contaminant Hydrology [Internet]. 1997;28(1-2):17 - 20. http://dx.doi.org/10.1016/S0169-7722(97)00074-0 .
Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Archives of Microbiology [Internet]. 1997;168(5):380 - 388. http://dx.doi.org/10.1007/s002030050512 .
Precipitation of Arsenic Trisulfide by Desulfotomaculum auripigmentum. Applied and Environmental Microbiology [Internet]. 1997;63:2022-8. http://aem.asm.org/content/63/5/2022.abstract .
Role for heavy metals in forest decline indicated by phytochelatin measurements. Nature [Internet]. 1996;381(6577):64 - 65. http://dx.doi.org/10.1038/381064a0 .
Export of Cadmium and Phytochelatin by the Marine Diatom Thalassiosira weissflogii. Environmental Science & Technology [Internet]. 1996;30(6):1814 - 1821. http://dx.doi.org/10.1021/es950331p .
Uptake, Toxicity, and Trophic Transfer of Mercury in a Coastal Diatom. Environmental Science & Technology [Internet]. 1996;30(6):1835 - 1845. http://dx.doi.org/10.1021/es950373d .
In vivo substitution of zinc by cobalt in carbonic anhydrase of a marine diatom. Limnology and Oceanography [Internet]. 1996;41(3):573 - 577. http://dx.doi.org/10.4319/lo.1996.41.3.0573 .
In vivo substitution of zinc by cobalt in carbonic anhydrase of a marine diatom. Limnology and Oceanography [Internet]. 1996;41:573–577. http://dx.doi.org/10.4319/lo.1996.41.3.0573 .
The Role of Microorganisms in Elemental Mercury Formation in Natural Waters. Water, Air, and Soil Pollution [Internet]. 1995;80(1-4). https://dx.doi.org/10.1007%2FBF01189729 .
Phytochelatin production in marine algae. 1. An interspecies comparison. Limnology and Oceanography [Internet]. 1995;40(4):649 - 657. http://dx.doi.org/10.4319/lo.1995.40.4.0649 .
Effects of aluminum and fluoride on phosphorus acquisition by Chlamydomonas reinhardtii. Canadian Journal of Fisheries and Aquatic Sciences [Internet]. 1995;52(2):353 - 357. http://dx.doi.org/10.1139/f95-036 .
Replacement of zinc by cadmium in marine phytoplankton. Marine Ecology Progress Series [Internet]. 1995;127:305 - 309. http://dx.doi.org/10.3354/meps127305 .
The role of microorganisms in elemental mercury formation in natural waters. Water, Air, & Soil Pollution [Internet]. 1995;80(1-4):775 - 787. http://dx.doi.org/10.1007/BF01189729 .
Phytochelatin production in marine algae. 1. An interspecies comparison. Limnology and Oceanography [Internet]. 1995;40:649–657. http://dx.doi.org/10.4319/lo.1995.40.4.0649 .
Bioaccumulation of mercury and methylmercury. Water, Air, & Soil Pollution [Internet]. 1995;80(1-4):915 - 921. http://dx.doi.org/10.1007/BF01189744 .
Phytochelatin production in marine algae. 2. Induction by various metals. Limnology and Oceanography [Internet]. 1995;40:658–665. http://dx.doi.org/10.4319/lo.1995.40.4.0658 .
Growth limits on phytoplankton. Nature [Internet]. 1995;373(6509):28 - 28. http://dx.doi.org/10.1038/373028c0 .
Cadmium: A nutrient for the marine diatom Thalassiosira weissflogii. Limnology and Oceanography [Internet]. 1995;40:1056–1063. http://dx.doi.org/10.4319/lo.1995.40.6.1056 .
The biogeochemical cycling of elemental mercury: Anthropogenic influences. [Internet]. 1994;58(15):3191 - 3198. http://dx.doi.org/10.1016/0016-7037(94)90046-9 .
Trace metal nutrition and toxicity in phytoplankton. In Acvhiv fur Hydrology, Advances in Limnology. Stuttgart; 1994. pp. 79-97. .
The equatorial Pacific Ocean: Grazer-controlled phytoplankton populations in an iron-limited ecosystem. Limnology and Oceanography [Internet]. 1994;39(3):520 - 534. http://dx.doi.org/10.4319/lo.1994.39.3.0520 .
Microbe grows by reducing arsenic. Nature [Internet]. 1994;371(6500):750 - 750. http://dx.doi.org/10.1038/371750a0 .
The equatorial Pacific Ocean: Grazer-controlled phytoplankton populations in an iron-limited ecosystem1. Limnology and Oceanography [Internet]. 1994;39:520–534. http://dx.doi.org/10.4319/lo.1994.39.3.0520 .
Phytochelatin production by marine phytoplankton at low free metal ion concentrations: laboratory studies and field data from Massachusetts Bay. Proceedings of the National Academy of Sciences [Internet]. 1994;91:8433-8436. http://www.pnas.org/content/91/18/8433.abstract .
Zinc and carbon co-limitation of marine phytoplankton. Nature [Internet]. 1994;369(6483):740 - 742. http://dx.doi.org/10.1038/369740a0 .
Trace metal transport by marine microorganisms: implications of metal coordination kinetics. Deep Sea Research Part I: Oceanographic Research Papers [Internet]. 1993;40(1):129 - 150. http://dx.doi.org/10.1016/0967-0637(93)90057-A .
Principles of Aquatic Chemistry. Wiley Inter Science. New York: John Wiley & Sons Ltd; 1993. p. 588. .
The role of microorganisms in elemental mercury formation in natural waters. In Heavy Metals in the Environment . 1993. pp. 293-296. .
Principles and Applications of Aquatic Chemistry. 2nd ed. New York: John Wiley; 1993. .
Oligoelectrolyte model for cation binding by humic substances. Environmental Science & Technology [Internet]. 1992;26(2):284 - 294. http://dx.doi.org/10.1021/es00026a007 .
Investigation of the electrostatic properties of humic substances by fluorescence quenching. Environmental Science & Technology [Internet]. 1992;26(2):294 - 302. http://dx.doi.org/10.1021/es00026a008 .
Investigations of iron coordination and redox reactions in seawater using 59Fe radiometry and ion-pair solvent extraction of amphiphilic iron complexes. Marine Chemistry [Internet]. 1992;38(3-4):209 - 235. http://dx.doi.org/10.1016/0304-4203(92)90035-9 .
Oligoelectrolyte model for cation binding by humic substances. Environmental Science & TechnologyEnvironmental Science & Technology [Internet]. 1992;26(2):284 - 294. http://dx.doi.org/10.1021/es00026a007 .
Limitation of productivity by trace metals in the sea. Limnology and Oceanography [Internet]. 1991;36:1742–1755. http://dx.doi.org/10.4319/lo.1991.36.8.1742 .
Heterogeneous reactions in coastal waters. In Ocean Margin Processes in Global Change. New York: John Wiley & Sons Ltd; 1991. pp. 165-180. .
Colimitation of phytoplankton growth by nickel and nitrogen. Limnology and Oceanography [Internet]. 1991;36:1071–1077. http://dx.doi.org/10.4319/lo.1991.36.6.1071 .
Iron nutrition of phytoplankton and its possible importance in the ecology of ocean regions with hight nutrient and low biomass. Oceanography. 1991;4(2):56-61. .
Amine Oxidases of Marine Phytoplankton. Applied and Environmental Microbiology [Internet]. 1991;57:2440-2443. http://aem.asm.org/content/57/8/2440.abstract .
Potential effects of UV-B on the chemical environment of marine organisms: A review. Environmental Pollution [Internet]. 1991;70(2):117 - 130. http://dx.doi.org/10.1016/0269-7491(91)90084-A .
Iron and nitrogen nutrition of equatorial Pacific plankton. Deep Sea Research Part A. Oceanographic Research Papers [Internet]. 1991;38(11):1361 - 1378. http://dx.doi.org/10.1016/0198-0149(91)90011-4 .
A method for the measurement of choline and hydrogen peroxide in seawater. Marine Chemistry [Internet]. 1990;30:409 - 421. http://dx.doi.org/10.1016/0304-4203(90)90084-P .
Surface Complexation Modeling: Hydrous Ferric Oxide. New York: John Wiley & Sons Ltd; 1990. .
lron transport in marine phytoplankton: Kinetics of cellular and medium coordination reactions. Limnology and Oceanography [Internet]. 1990;35:1002–1020. http://dx.doi.org/10.4319/lo.1990.35.5.1002 .
The kinetics of trace metal complexation: Implications for metal reactivity in natural waters. In Aquatic Chemical Kinetics. 1990. pp. 145-171. .
Amino acid utilization by marine phytoplankton: A novel mechanism. Limnology and Oceanography [Internet]. 1990;35:260–269. http://dx.doi.org/10.4319/lo.1990.35.2.0260 .
The role of extracellular enzymatic reactions in natural waters. In Aquatic Chemical Kinetics. New York: John Wiley & Sons Ltd; 1990. pp. 235-257. .
Availability of well-defined iron colloids to the marine diatom Thalassiosira weissflogii. Limnology and Oceanography [Internet]. 1990;35:652–662. http://dx.doi.org/10.4319/lo.1990.35.3.0652 .
Kinetics of trace metal complexation: ligand-exchange reactions. Environmental Science & Technology [Internet]. 1990;24(2):242 - 252. http://dx.doi.org/10.1021/es00072a014 .
Settling and coagulation characteristics of fluorescent particles determined by flow cytometry and fluorometry. Environmental Science & Technology [Internet]. 1990;24(4):506 - 513. http://dx.doi.org/10.1021/es00074a007 .
Pitfalls of sequential extractions. Water Research [Internet]. 1990;24(8):1055 - 1056. http://dx.doi.org/10.1016/0043-1354(90)90129-T .
Comparison of cell-surface L-amino acid oxidases from several marine phytoplankton. Marine Ecology Progress Series [Internet]. 1990;59:195-201. http://dx.doi.org/10.3354/meps059195 .
Cadmium and cobalt substitution for zinc in a marine diatom. Nature [Internet]. 1990;344(6267):658 - 660. http://dx.doi.org/10.1038/344658a0 .
Comment on "A unified physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids)". Environmental Science & TechnologyEnvironmental Science & Technology [Internet]. 1989;23(6):746 - 747. http://dx.doi.org/10.1021/es00064a016 .
Slow coordination reactions in seawater. Geochimica et Cosmochimica Acta [Internet]. 1989;53(3):611 - 618. http://dx.doi.org/10.1016/0016-7037(89)90004-5 .
Preparation and Chemistry of the Artificial Algal Culture Medium Aquil. Biological OceanographyBiological Oceanography [Internet]. 1989;6(5-6):443 - 461. http://dx.doi.org/10.1080/01965581.1988.10749544 .
The aquatic chemistry of trace metals in biofilms. In Structure and Function of Biofilms. New York: John Wiley & Sons Ltd; 1989. .
Distinguishing between extra- and intracellular iron in marine phytoplankton. Limnology and Oceanography [Internet]. 1989;34:1113–1120. http://dx.doi.org/10.4319/lo.1989.34.6.1113 .
Dissolved Organic Nitrogen Use by Phytoplankton: The Role of Cell-Surface Enzymes. Biological Oceanography [Internet]. 1989;6(3-4):347 - 354. http://dx.doi.org/10.1080/01965581.1988.10749536 .
Humic acid complexation of calcium and copper. Environmental Science & Technology [Internet]. 1988;22(10):1234 - 1237. http://dx.doi.org/10.1021/es00175a018 .
Kinetics of trace metal complexation: role of alkaline-earth metals. Environmental Science & Technology [Internet]. 1988;22(12):1469 - 1478. http://dx.doi.org/10.1021/es00177a014 .
Dark production of H2O2 in the Sargasso Sea. Limnology and Oceanography [Internet]. 1988;33:1606–1611. http://dx.doi.org/10.4319/lo.1988.33.6part2.1606 .
Plasmalemma Redox Activity in the Diatom Thalassiosira: A Possible Role for Nitrate Reductase. Plant Physiology [Internet]. 1988;87(1):143 - 147. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1054714/ .
Solute-particle and particle-particle reaction in seawater. CHEMRAWN IV Modern Chemistry and Chemical Technology Applied to the Ocean and its Resources Proceedings of an International Conference and Workshop [Internet]. 1988;3(1):80 - . http://dx.doi.org/10.1016/0883-2927(88)90054-6 .
The role of colloids in the partitioning of solutes in natural waters. In Aquatic Surface Chemistry. New York: John Wiley & Sons Ltd; 1987. .
Modelisation du transfert d'elements majeurs reactifs dans un champ de temperature variable; methodologie et exemples simples. Bulletin de la Societe Geologique de France [Internet]. 1987;III:1009-1017. http://dx.doi.org/10.2113/gssgfbull.III.5.1009 .
Adsorption of Inorganic Pollutants in Aquatic Systems. Journal of Hydraulic EngineeringJournal of Hydraulic Engineering [Internet]. 1987;113(4):430 - 475. http://dx.doi.org/10.1061/(ASCE)0733-9429(1987)113:4(430) .
Development of a data base for modelling adsorption of inorganics on iron and aluminum oxides. Environmental Progress [Internet]. 1987;6:133–137. http://dx.doi.org/10.1002/ep.670060216 .
A field comparison of two methods for the determination of copper complexation: Bacterial bioassay and fixed-potential amperometry. Marine Chemistry [Internet]. 1987;20(4):299 - 312. http://dx.doi.org/10.1016/0304-4203(87)90064-8 .
Trace Metal Reduction By Phytoplankton: The Role Of Plasmalemma Redox Enzymes. Journal of Phycology [Internet]. 1987;23(s2):237 - 244. http://dx.doi.org/10.1111/j.1529-8817.1987.tb04131.x .
Hydrogen peroxide production by a marine phytoplankter1. Limnology and Oceanography [Internet]. 1987;32:1365–1369. http://dx.doi.org/10.4319/lo.1987.32.6.1365 .
Kinetics Of Nutrient Uptake And Growth In Phytoplankton1. Journal of Phycology [Internet]. 1987;23:137–150. http://dx.doi.org/10.1111/j.0022-3646.1987.00137.x .
Metal-humate interactions. 1. Discrete ligand and continuous distribution models. Environmental Science & Technology [Internet]. 1986;20(7):669 - 675. http://dx.doi.org/10.1021/es00149a004 .
Metal-humate interactions. 2. Application and comparison of models. Environmental Science & Technology [Internet]. 1986;20(7):676 - 683. http://dx.doi.org/10.1021/es00149a005 .
Role of coagulation in the kinetics of sedimentation. Environmental Science & Technology [Internet]. 1986;20(2):187 - 195. http://dx.doi.org/10.1021/es00144a014 .
Trace metals-phytoplankton interaction. In Biogeochemical Processes at the Land Sea Boundary. Amsterdam: Elsevier; 1986. .
Response of the marine diatom Thalassiosira weissflogii to iron stress. Limnology and Oceanography [Internet]. 1986;31:989–997. http://dx.doi.org/10.4319/lo.1986.31.5.0989 .
The geobiological cycle of trace elements in aquatic systems: Redfield revisited. In Chemical Processes in Lakes. New York: John Wiley & Sons Ltd; 1985. .
A surface precipitation model for the sorption of cations on metal oxides. [Internet]. 1985;106(1):226 - 242. http://dx.doi.org/10.1016/0021-9797(85)90400-X .
Nickel Accumulation by Scenedesmus and Daphnia: Food-Chain Transport and Geochemical Implications. Canadian Journal of Fisheries and Aquatic SciencesCanadian Journal of Fisheries and Aquatic Sciences [Internet]. 1985;42(4):724 - 730. http://dx.doi.org/10.1139/f85-093 .
Photoreductive dissolution of colloidal iron oxides in natural waters. Environmental Science & Technology [Internet]. 1984;18(11):860 - 868. http://dx.doi.org/10.1021/es00129a010 .
Geochemistry of municipal waste in coastal waters. In Ocean Discharge of Municipal Wastes: Impact on Coastal Waters. Boston: MIT Sea Grant College Program Publishers; 1984. .
Ligand exchange and fluorescence quenching studies of the fulvic acid-iron interaction. Analytica Chimica Acta [Internet]. 1984;162:263 - 274. http://dx.doi.org/10.1016/S0003-2670(00)84247-6 .
Photoreductive dissolution of colloidal iron oxide: Effect of citrate. Journal of Colloid and Interface Science [Internet]. 1984;102(1):121 - 137. http://dx.doi.org/10.1016/0021-9797(84)90206-6 .
Coulometric study of the redox dynamics of iron in seawater. Analytical Chemistry [Internet]. 1984;56(4):787 - 792. http://dx.doi.org/10.1021/ac00268a045 .
Characterization of complexing agents in natural waters by copper(II)/copper(I) amperometry. Analytical Chemistry [Internet]. 1983;55(8):1268 - 1274. http://dx.doi.org/10.1021/ac00259a020 .
Trace Metals and plankton in the oceans: Facts and speculations. In Trace Metals in Sea Water. Plenum Press; 1983. pp. 841-869. .
Characterization of Organic Copper-Complexing Agents Released by Daphnia magna. Canadian Journal of Fisheries and Aquatic SciencesCanadian Journal of Fisheries and Aquatic Sciences [Internet]. 1983;40(8):1270 - 1277. http://dx.doi.org/10.1139/f83-145 .
Antagonism Between Cadmium And Iron In The Marine Diatom Thalassiosira Weissflogii. Journal of Phycology [Internet]. 1983;19(4):495 - 507. http://dx.doi.org/10.1111/j.0022-3646.1983.00495.x .
Reversal of cadmium toxicity in a diatom: An interaction between cadmium activity and iron1. Limnology and Oceanography [Internet]. 1982;27:745–752. http://dx.doi.org/10.4319/lo.1982.27.4.0745 .
The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnology and Oceanography [Internet]. 1982;27:789–813. http://dx.doi.org/10.4319/lo.1982.27.5.0789 .
Effects Of Copper Toxicity On Silicic Acid Uptake And Growth In Thalassiosira Pseudonana1. Journal of Phycology [Internet]. 1981;17(3):270 - 278. http://dx.doi.org/10.1111/j.1529-8817.1981.tb00850.x .
The interaction between zinc deficiency and copper toxicity as it affects the silicic acid uptake mechanisms in Thalassiosira pseudonana. Limnology and Oceanography [Internet]. 1981;26:67–73. http://dx.doi.org/10.4319/lo.1981.26.1.0067 .
Adsorption models: A mathematical analysis in the framework of general equilibrium calculations. In Adsorption of Inorganics at the Solid-Liquid Interface. Ann Arbor, MI: Ann Arbor Science; 1981. pp. 263-294. .
Copper complexation by siderophores from filamentous blue-green algae. Limnology and Oceanography [Internet]. 1980;25:62–71. http://dx.doi.org/10.4319/lo.1980.25.1.0062 .
The geochemical control of seawater (Sillen revisited). Environmental Science & Technology [Internet]. 1980;14(10):1182 - 1186. http://dx.doi.org/10.1021/es60170a007 .
Sorption of copper and lead by hydrous ferric oxide. Environmental Science & Technology [Internet]. 1980;14(11):1326 - 1331. http://dx.doi.org/10.1021/es60171a003 .
Uptake of Fe (II) by a Diatom in Oxic Culture Medium. Marine Biology Letters. 1980;1(5):263-268. .
The phasing and distribution of cell division cycles in marine diatoms. In Primary Productivity in the Sea. Plenum Press; 1980. .
Trace metal speciation and toxicity in phytoplankton cultures. Narragansett, Rhode Island: US EPA; 1979. .
Aquil: A Chemically Defined Phytoplankton Culture Medium For Trace Metal Studies12. Journal of Phycology [Internet]. 1979;15(2):135 - 141. http://dx.doi.org/10.1111/j.1529-8817.1979.tb02976.x .
Release of weak and strong copper-complexing agents by algae. Limnology and Oceanography [Internet]. 1979;24:823–837. http://dx.doi.org/10.4319/lo.1979.24.5.0823 .
The seeding of two red tide blooms by the germination of benthic Gonyaulax tamarensis hypnocysts. Estuarine and Coastal Marine Science [Internet]. 1979;8(3):279 - 293. htttp://dx.doi.org/10.1016/0302-3524(79)90098-7 .
Toxic dinoflagellate blooms in the Cape Cod region of Massachusetts. In Toxic Dinoflagellate Blooms. Key Biscayne, FL: Proceedings of the Second International Conference on Toxic Dinoflagellate Blooms; 1979. .
Chloride interference in cupric ion selective electrode measurements. Analytical ChemistryAnalytical Chemistry [Internet]. 1979;51(11):1792 - 1798. http://dx.doi.org/10.1021/ac50047a043 .
Potentiometric determination of copper complexation by phytoplankton exudates. Limnology and Oceanography [Internet]. 1978;23:538–542. http://dx.doi.org/10.4319/lo.1978.23.3.0538 .
Copper sensitivity of Gonyaulax tamarensis1. Limnology and Oceanography [Internet]. 1978;23:283–295. http://dx.doi.org/10.4319/lo.1978.23.2.0283 .
Empirical insights into lake response to nutrient loadings, with application to models of phosphorus in lakes. Environmental Science & Technology [Internet]. 1978;12(2):195 - 201. http://dx.doi.org/10.1021/es60138a004 .
Growth limitation of a coastal diatom by low zinc ion activity. Nature [Internet]. 1978;276(5683):70 - 71. http://dx.doi.org/10.1038/276070a0 .
Copper Toxicity To Skeletonema Costatum (Bacillariophyceae). Journal of Phycology [Internet]. 1978;14(1):43 - 48. http://dx.doi.org/10.1111/j.1529-8817.1978.tb00629.x .
On the interfacing of chemical, physical and biological water quality models. In Fate of Pollutants in the Air and Wave Environment. Wiley-Interscience; 1977. .
Fate of trace metals in Los Angeles County waste water discharge. Environmental Science & Technology [Internet]. 1975;9(8):756 - 761. http://dx.doi.org/10.1021/es60106a011 .
Interactions and chemostasis in aquatic chemical systems. In Trace Metals and Metal-Organic Interactions in Natural Waters. Ann Arbor, MI : Ann Arbor Science; 1973. .
A study of passive potassium efflux from human red blood cells using ion-specific electrodes. The Journal of Membrane Biology [Internet]. 1973;12(1):69 - 88. http://dx.doi.org/10.1007/BF01869992 .
Numerical method for computing equilibriums in aqueous chemical systems. Environmental Science & Technology [Internet]. 1972;6(1):58 - 67. http://dx.doi.org/10.1021/es60060a006 .
Quantitation Of Human Red Blood Cell Fixation By Glutaraldehyde. The Journal of Cell Biology [Internet]. 1971;48(1):91 - 100. http://dx.doi.org/10.1083/jcb.48.1.91 .